Nature

Building cratonic keels in Precambrian plate tectonics

  • 1.

    Arndt, N. T. et al. Origin of Archean subcontinental lithospheric mantle: some petrological constraints. Lithos 109, 61–71 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 2.

    Peslier, A. H. et al. Olivine water contents in the continental lithosphere and the longevity of cratons. Nature 467, 78–81 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 3.

    Lee, C. T. A., Luffi, P. & Chin, E. J. Building and destroying continental mantle. Annu. Rev. Earth Planet. Sci. 39, 59–90 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 4.

    Eaton, D. W. & Perry, H. K. C. Ephemeral isopycnicity of cratonic mantle keels. Nat. Geosci. 6, 967–970 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Griffin, W. L. et al. The evolution of lithospheric mantle beneath the Kalahari craton and its margins. Lithos 71, 215–241 (2003a).

    ADS 
    CAS 

    Google Scholar
     

  • 6.

    Griffin, W. L. et al. The origin and evolution of Archaean lithospheric mantle. Precambr. Res. 127, 19–41 (2003b).

    ADS 
    CAS 

    Google Scholar
     

  • 7.

    Yuan, H. & Romanowicz, B. Lithospheric layering in the North American craton. Nature 466, 1063–1068 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Herzberg, C. et al. Temperatures in ambient mantle and plumes: constraints from basalts, picrites, and komatiites. Geochem. Geophys. Geosyst. 8, Q02006 (2007).

    ADS 

    Google Scholar
     

  • 9.

    Condie, K. C. & Kroner, A. When did plate tectonics begin? Evidence from the geologic record. In When Did Plate Tectonics Begin On Planet Earth? (eds Condie, K. C. & Pease, V.) 440, 281–294 (Geological Society of America, 2008).

  • 10.

    Korenaga, J. Initiation and evolution of plate tectonics on Earth: theories and observations. Annu. Rev. Earth Planet. Sci. 41, 117–151 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Gerya, T. V. Precambrian geodynamics: concepts and models. Gondwana Res. 25, 442–463 (2014).

    ADS 

    Google Scholar
     

  • 12.

    Dhuime, B., Wuestefeld, A. & Hawkesworth, C. J. Emergence of modern continental crust about 3 billion years ago. Nat. Geosci. 8, 552–555 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 13.

    Griffin, W. L. et al. The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J. Petrol. 50, 1185–1204 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 14.

    Griffin, W. L., O’Reilly, S. Y. & Ryan, C. G. The composition and origin of subcontinental lithospheric mantle. In Mantle Petrology: Field Observations and High-Pressure Experimentation: A Tribute to Francis(eds Fei, Y. et al.) 6, 13–45 (The Geochemical Society, 1999).

  • 15.

    Artemieva, I. M. & Mooney, W. D. Thermal thickness and evolution of Precambrian lithosphere: a global study. J. Geophys. Res. 106, 16387–16414 (2001).

    ADS 

    Google Scholar
     

  • 16.

    Boyd, F. R. Compositional distinction between oceanic and cratonic lithosphere. Earth Planet. Sci. Lett. 96, 15–26 (1989).

    ADS 
    CAS 

    Google Scholar
     

  • 17.

    Stein, M. & Hofmann, A. W. Mantle plumes and episodic crustal growth. Nature 372, 63–68 (1994).

    ADS 
    CAS 

    Google Scholar
     

  • 18.

    Davies, G. F. Punctuated tectonic evolution of the Earth. Earth Planet. Sci. Lett. 136, 363–379 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • 19.

    Griffin, W. L. & O’Reilly, S. Y. Cratonic lithospheric mantle: is anything subducted? Episodes 30, 43–53 (2007).


    Google Scholar
     

  • 20.

    Helmstaedt, H. H. & Schulze, D. J. Southern African kimberlites and their mantle sample: implications for Archean tectonics and lithosphere evolution. Geol. Soc. Aust. Spec. Publ 14, 358–368 (1989).


    Google Scholar
     

  • 21.

    Beall, A. P., Moresi, L. & Cooper, C. M. Formation of cratonic lithosphere during the initiation of plate tectonics. Geology 46, 487–490 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 22.

    Perchuk, A. L. et al. Hotter mantle but colder subduction in the Precambrian: what are the implications? Precambr. Res. 330, 20–34 (2019).

    CAS 

    Google Scholar
     

  • 23.

    Sizova, E. et al. Subduction styles in the Precambrian: insight from numerical experiments. Lithos 116, 209–229 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 24.

    Sizova, E. et al. Generation of felsic crust in the Archean: a geodynamic modeling perspective. Precambr. Res. 271, 198–224 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 25.

    van Hunen, J. & van den Berg, A. P. Plate tectonics on the early Earth limitations imposed by strength and buoyancy of subducted lithosphere. Lithos 103, 217–235 (2008).

    ADS 

    Google Scholar
     

  • 26.

    Richard, G., Bercovici, D. & Karato, S.-I. Slab dehydration in the Earth’s mantle transition zone. Earth Planet. Sci. Lett. 251, 156–167 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 27.

    Richard, G. C. & Bercovici, D. Water-induced convection in the Earth’s mantle transition zone. J. Geophys. Res. 114, B01205 (2009).

    ADS 

    Google Scholar
     

  • 28.

    O’Reilly, S. Y. & Griffin, W. L. Imaging chemical and thermal heterogeneity in the subcontinental lithospheric mantle with garnets and xenoliths: geophysical implications. Tectonophysics 416, 289–309 (2006).

    ADS 

    Google Scholar
     

  • 29.

    Kobussen, A. F. et al. Ghosts of lithospheres past: imaging an evolving lithospheric mantle in southern Africa. Geology 36, 515–518 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Kobussen, A. F., Griffin, W. L. & O’reilly, S. Y. Cretaceous thermochemical modification of the Kaapvaal cratonic lithosphere, South Africa. Lithos 112, 886–895 (2009).

    ADS 

    Google Scholar
     

  • 31.

    Rychert, C. A. & Shearer, P. M. A global view of the lithosphere–asthenosphere boundary. Science 324, 495–498 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 32.

    Selway, K., Ford, H. & Kelemen, P. The seismic mid-lithosphere discontinuity. Earth Planet. Sci. Lett. 414, 45–57 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 33.

    Conrad, C. P. & Lithgow-Bertelloni, C. How mantle slabs drive plate tectonics. Science 298, 207–209 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 34.

    Coltice, N. et al. What drives tectonic plates? Sci. Adv. 5, eaax4295 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Pearson, D. G. & Wittig, N. Formation of Archaean continental lithosphere and its diamonds: the root of the problem. J. Geol. Soc. Lond. 165, 895–914 (2008).


    Google Scholar
     

  • 36.

    O’Reilly, S. Y. et al. Taking the pulse of the Earth: linking crustal and mantle events. Aust. J. Earth Sci. 55, 983–995 (2008).

    ADS 

    Google Scholar
     

  • 37.

    Griffin, W. L. & O’Reilly, S. Y. The earliest subcontinental mantle. In Earth’s Oldest Rocks (eds Van Kranendonk, M. et al.) 81–102 (Elsevier, 2018).

  • 38.

    Gerya, T. V. et al. Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature 527, 221–225 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 39.

    Wang, H., van Hunen, J. & Pearson, G. Making Archean cratonic roots by lateral compression: a two-stage thickening and stabilization model. Tectonophysics 746, 562–571 (2018).

    ADS 

    Google Scholar
     

  • 40.

    Gerya, T. V. & Yuen, D. A. Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties. Phys. Earth Planet. Inter. 140, 293–318 (2003).

    ADS 

    Google Scholar
     

  • 41.

    Labrosse, S. & Jaupart, C. Thermal evolution of the Earth: secular changes and fluctuations of plate characteristics. Earth Planet. Sci. Lett. 260, 465–481 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 42.

    Herzberg, C. et al. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 43.

    Foley, S., Tiepolo, M. & Vannucci, R. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417, 837–840 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 44.

    Herzberg, C. & Rudnick, R. Formation of cratonic lithosphere: an integrated thermal and petrological model. Lithos 149, 4–15 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 45.

    Ranalli, G. Rheology of the Earth (Chapman & Hall, 1995).

  • 46.

    Rudnick, R. L. Making continental crust. Nature 378, 571–578 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • 47.

    Katz, R. F., Spiegelman, M. & Langmuir, C. H. A new parameterization of hydrous mantle melting. Geochem. Geophys. Geosyst. 4, 1073 (2003).

    ADS 

    Google Scholar
     

  • 48.

    Turcotte, D. L. & Schubert, G. Geodynamics (Cambridge Univ. Press, 2002).

  • 49.

    Chapman, D. Thermal gradients in the continental crust. In The Nature of the Lower Continental Crust (eds Dawson, J. et al.) 24, 63–70 (Geological Society of London, 1986).

  • 50.

    Wedepohl, K. H. The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217–1232 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • 51.

    Baitsch-Ghirardello, B., Gerya, T. V. & Burg, J.-P. Geodynamic regimes of intra-oceanic subduction: implications forearc extension vs. shortening processes. Gondwana Res. 25, 546–560 (2014).

    ADS 

    Google Scholar
     

  • 52.

    Crameri, F. et al. A comparison of numerical surface topography calculations in geodynamic modelling: an evaluation of the ‘sticky air’ method. Geophys. J. Int. 189, 38–54 (2012).

    ADS 

    Google Scholar
     

  • 53.

    Gerya, T. V. & Yuen, D. A. Rayleigh-Taylor instabilities from hydration and melting propel “cold plumes” at subduction zones. Earth Planet. Sci. Lett. 212, 47–62 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 54.

    Katsura, T. & Ito, E. The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: precise determination of stabilities of olivine, modified spinel, and spinel. J. Geophys. Res. 94, 663–670 (1989).


    Google Scholar
     

  • 55.

    Ito, E. et al. Negative pressure-temperature slopes for reactions forming MgSiO3 perovskite from calorimetry. Science 249, 1275–1278 (1990).

    ADS 
    CAS 

    Google Scholar
     

  • 56.

    Ito, K. & Kennedy, G. C. in The Structure and Physical Properties of the Earth’s Crust (ed. Heacock, J. G.) Geophysical Monograph Series 14, 303–314 (AGU, 1971).

  • 57.

    Bittner, D. & Schmeling, H. Numerical modeling of melting processes and induced diapirism in the lower crust. Geophys. J. Int. 123, 59–70 (1995).

    ADS 

    Google Scholar
     

  • 58.

    Clauser, C. & Huenges, E. Thermal conductivity of rocks and minerals. In Rock Physics and Phase Relations: A Handbook of Physical Constants (ed. Ahrens, T. J.) 105–126 (AGU, 1995).

  • 59.

    Schmidt, M. & Poli, S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett. 163, 361–379 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • 60.

    Connolly, J. A. D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • 61.

    Gerya, T. V. et al. Seismic implications of mantle wedge plumes. Phys. Earth Planet. Inter. 156, 59–74 (2006).

    ADS 

    Google Scholar
     

  • 62.

    Vogt, K., Gerya, T. V. & Castro, A. Crustal growth at active continental margins: Numerical modelling. Phys. Earth Planet. Inter. 192/193, 1–20 (2012).

    ADS 

    Google Scholar
     

  • 63.

    Elliott, T. et al. Element transport from slab to volcanic front at the Mariana arc. J. Geophys. Res. 102, 14991–15019 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • 64.

    Hawkesworth, C. Elemental U and Th variations in island arc rocks: implications for U-series isotopes. Chem. Geol. 139, 207–221 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • 65.

    Rozel, A. B. et al. Continental crust formation on early Earth controlled by intrusive magmatism. Nature 545, 332–335 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 66.

    Djomani, Y. H. P. et al. The density structure of subcontinental lithosphere through time. Earth Planet. Sci. Lett. 184, 605–621 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • 67.

    Schutt, D. L. & Lesher, C. E. Effects of melt depletion on the density and seismic velocity of garnet and spinel lherzolite. J. Geophys. Res. 111, B05401 (2006).

    ADS 

    Google Scholar
     

  • 68.

    Burg, J.-P. & Gerya, T. V. The role of viscous heating in Barrovian metamorphism of collisional orogens: thermomechanical models and application to the Lepontine Dome in the Central Alps. J. Metamorph. Geol. 23, 75–95 (2005).

    ADS 

    Google Scholar
     

  • 69.

    Mei, S. & Kohlstedt, D. L. Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime. J. Geophys. Res. 105 (B9), 21471–21481 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 70.

    Gerya, T. V. & Meilick, F. I. Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts. J. Metamorph. Geol. 29, 7–31 (2011).

    ADS 

    Google Scholar
     

  • 71.

    Griffin, W. L. et al. Thermal state and composition of the lithospheric mantle beneath the Daldyn kimberlite field, Yakutia. Tectonophysics 262, 19–33 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • 72.

    Griffin, W. L. et al. Layered mantle lithosphere in the Lac de Gras area, Slave Craton: composition, structure and origin. J. Petrol. 40, 705–727 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 73.

    Griffin, W. L. et al. The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton. Tectonophysics 310, 1–35 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 74.

    Griffin, W. L. et al. In situ Re-Os analysis of sulfide inclusions in kimberlitic olivine: new constraints on depletion events in the Siberian lithospheric mantle. Geochem. Geophys. Geosyst. 3, 1069 (2002).

    ADS 

    Google Scholar
     

  • 75.

    Griffin, W. L. et al. Lithosphere mapping beneath the North American Plate. Lithos 77, 873–922 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 76.

    Griffin, W. L. et al. The Kharamai kimberlite field, Siberia: modification of the lithospheric mantle by the Siberian Trap event. Lithos 81, 167–187 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • 77.

    Griffin, W. L. et al. Archean lithospheric mantle beneath Arkansas: continental growth by microcontinent accretion. Bull. Geol. Soc. Am. 123, 1763–1775 (2011).


    Google Scholar
     

  • 78.

    Aulbach, S. et al. Mantle formation and evolution, Slave craton: constraints from HSE abundances and Re-Os systematics of sulfide inclusions in mantle xenocrysts. Chem. Geol. 208, 61–88 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 79.

    Westerlund, K. J. et al. Re–Os isotope systematics of peridotitic diamond inclusion sulfides from the Panda kimberlite, Slave craton. In Abstr. 8th Intl. Kimberlite Conf. https://ikcabstracts.com/index.php/ikc/issue/view/21 (2003).

  • 80.

    Davies, R. et al. Diamonds from the deep: pipe DO-27, Slave craton, Canada. In Proc. 7th Int. Kimberlite Conf., 148–155 (Red Roof Design, 1999).

  • 81.

    Aulbach, S. et al. Lithosphere formation in the central Slave craton (Canada): plume subcretion or lithosphere accretion? Contrib. Mineral. Petrol. 154, 409–427 (2007).

    CAS 

    Google Scholar
     

  • 82.

    Aulbach, S. Craton nucleation and formation of thick lithospheric roots. Lithos 149, 16–30 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 83.

    van der Meer, Q. H. A. et al. The provenance of subcratonic mantle beneath the Limpopo mobile belt (South Africa). Lithos 170-171, 90–104 (2013).

    ADS 

    Google Scholar
     

  • 84.

    Gaul, O. F., O’Reilly, S. Y. & Griffin, W. L. Lithosphere structure and evolution in southeastern Australia. Geol. Soc. Aust. Spec. Publ 22, 179–196 (2003).


    Google Scholar
     

  • 85.

    Scott Smith, B. et al. Kimberlites near Orroroo, South Australia. In Kimberlites: I: Kimberlites And Related Rocks (ed. Kornprobst, J.) 11, 121–142 (Elsevier, 1984).

  • 86.

    Griffin, W. L. et al. Ni in Cr-pyrope garnets: a new geothermometer. Contrib. Mineral. Petrol. 103, 199–202 (1989).

    ADS 
    CAS 

    Google Scholar
     

  • 87.

    Griffin, W. L. et al. Statistical techniques for the classification of chromites in diamond exploration samples. J. Geochem. Explor. 59, 233–249 (1997).

    CAS 

    Google Scholar
     

  • 88.

    Ryan, C. G., Griffin, W. L. & Pearson, N. J. Garnet geotherms: a technique for derivation of P-T data from Cr-pyrope garnets. J. Geophys. Res. 101, 5611–5625 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • 89.

    Gaul, O. F. et al. Mapping olivine composition in the lithospheric mantle. Earth Planet. Sci. Lett. 182, 223–235 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 90.

    Begg, G. C. et al. The lithospheric architecture of Africa: seismic tomography, mantle petrology and tectonic evolution. Geosphere 5, 23–50 (2009).

    ADS 

    Google Scholar
     

  • Products You May Like

    Articles You May Like

    Why Do Men Get Beer Bellies?
    Facebook, Twitter make editorial decisions to limit distribution of story claiming to show ‘smoking gun’ emails related to Biden and his son
    What’s Inside A Rattlesnake’s Tail?
    Why does a high-impact publication matter so much for a career in research?
    ESA awards contracts for moon and Mars exploration

    Leave a Reply

    Your email address will not be published. Required fields are marked *