Coherent many-body exciton in van der Waals antiferromagnet NiPS3

Nature
  • 1.

    Frenkel, J. On the transformation of light into heat in solids. I. Phys. Rev. 37, 17–44 (1931).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Lozovik, Yu. E. & Yudson, V. I. Feasibility of superfluidity of paired spatially separated electrons and holes; a new superconductivity mechanism. JETP Lett. 22, 274–276 (1975).

    ADS 

    Google Scholar
     

  • 3.

    Nandi, D., Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Exciton condensation and perfect Coulomb drag. Nature 488, 481–484 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    Butov, L. V., Gossard, A. C. & Chemla, D. S. Macroscopically ordered state in an exciton system. Nature 418, 751–754 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 5.

    Snoke, D., Denev, S., Liu, Y., Pfeiffer, L. & West, K. Long-range transport in excitonic dark states in coupled quantum wells. Nature 418, 754–757 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 6.

    Wang, K. et al. Electrical control of charged carriers and excitons in atomically thin materials. Nat. Nanotechnol. 13, 128–132 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 7.

    Eisenstein, J. P. Exciton condensation in bilayer quantum Hall systems. Annu. Rev. Condens. Matter Phys. 5, 159–181 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 8.

    Eisenstein, J. P. & Macdonald, A. H. Bose–Einstein condensation of excitons in bilayer electron systems. Nature 432, 691–694 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 9.

    Unuchek, D. et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 560, 340–344 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Zhang, F. C. & Rice, T. M. Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev. B 37, 3759(R) (1988).

    ADS 
    Article 

    Google Scholar
     

  • 11.

    Khomskii, D. I. Transition Metal Compounds (Cambridge Univ. Press, 2014).

  • 12.

    Friemel, G. et al. Resonant magnetic exciton mode in the heavy-fermion antiferromagnet CeB6. Nat. Commun. 3, 830 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 13.

    Park, J.-G. Opportunities and challenges of 2D magnetic van der Waals materials: magnetic graphene? J. Phys. Condens. Matter 28, 301001 (2016).

    Article 

    Google Scholar
     

  • 14.

    Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 15.

    Brec, R. Review on structural and chemical properties of transition metal phosphorous trisulfides MPS3. Solid State Ion. 22, 3–30 (1986).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Joy, P. A. & Vasudevan, S. Magnetism in the layered transition-metal thiophosphates MPS3 (M = Mn, Fe, and Ni). Phys. Rev. B 46, 5425–5433 (1992).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 17.

    Wildes, A. R. et al. Magnetic structure of the quasi-two-dimensional antiferromagnet NiPS3. Phys. Rev. B 92, 224408 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 18.

    Kuo, C.-T. et al. Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 van der Waals crystals. Sci. Rep. 6, 20904 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 19.

    Lee, J.-U. et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 20.

    Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 21.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 22.

    Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nat. Mater. 560, 336–339 (2018).

    CAS 

    Google Scholar
     

  • 23.

    Kim, S. Y. et al. Charge-spin correlation in van der Waals antiferromagnet NiPS3. Phys. Rev. Lett. 120, 136402 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Kim, K. et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat. Commun. 10, 345 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 25.

    Susner, M. A., Chyasnavichyus, M., McGuire, M. A., Ganesh, P. & Maksymovych, P. Metal thio- and selenophosphates as multifunctional van der Waals layered materials. Adv. Mater. 29, 1602852 (2017).

    Article 

    Google Scholar
     

  • 26.

    Bernasconi, M. et al. Lattice dynamics of layered MPX. Phys. Rev. B 38, 12089–12099 (1988).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 27.

    Monney, C. et al. Determining the short-range spin correlations in the spin-chain Li2CuO2 and CuGeO3 compounds using resonant inelastic x-ray scattering. Phys. Rev. Lett. 110, 087403 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 28.

    Collart, E. et al. Localized and delocalized excitons: resonant inelastic X-ray scattering in La2–
    xSrxNiO4 and La2−
    xSrxCuO4. Phys. Rev. Lett. 96, 157004 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 29.

    Vehse, W. E., Lee, K. H., Yun, S. I. & Sibley, W. A. Ni2+ emission in MgO, KMgF3, KZnF3, and MgF2. J. Lumin. 10, 149–162 (1975).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Joy, P. A. & Vasudevan, S. Optical-absorption spectra of the layered transition-metal thiophosphates MPS3 (M = Mn, Fe, and Ni). Phys. Rev. B 46, 5134–5141 (1992).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 31.

    Kozielski, M., Pollini, I. & Spinolo, G. Electric absorption spectra of Ni2+ in NiCl2 and NiBr2 (phonon and magnon sidebands). J. Phys. C 5, 1253–1264 (1972).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 32.

    Lane, C. & Zhu, J.-X. Thickness dependence of electronic structure and optical properties of a correlated van der Waals antiferromagnet NiPS3 thin film. Preprint at https://arXiv.org/abs/2003.01614 (2020).

  • 33.

    de Groot, F. Multiplet effects in X-ray spectroscopy. Coord. Chem. Rev. 249, 31–63 (2005).

  • Products You May Like

    Articles You May Like

    Toy Figurines | How It’s Made
    Strong Interaction: The Four Fundamental Forces of Physics #1a
    How to Build a Trebuchet | MythBusters
    Mauritius Citizens, Groups Try to Contain Oil Spill to Protect Coastline and Mahebourg Lagoon
    We Are NASA

    Leave a Reply

    Your email address will not be published. Required fields are marked *