Nature

Control of osteoblast regeneration by a train of Erk activity waves

  • 1.

    Gelens, L., Anderson, G. A. & Ferrell, J. E. Jr. Spatial trigger waves: positive feedback gets you a long way. Mol. Biol. Cell 25, 3486–3493 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 2.

    Hubaud, A., Regev, I., Mahadevan, L. & Pourquie, O. Excitable dynamics and Yap-dependent mechanical cues drive the segmentation clock. Cell 171, 668–682 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 3.

    Werner, S., Vu, H. T. & Rink, J. C. Self-organization in development, regeneration and organoids. Curr. Opin. Cell Biol. 44, 102–109 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 4.

    Sonnen, K. F. et al. Modulation of phase shift between Wnt and Notch signaling oscillations controls mesoderm segmentation. Cell 172, 1079–1090 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 5.

    Deneke, V. E. & Di Talia, S. Chemical waves in cell and developmental biology. J. Cell Biol. 217, 1193–1204 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 6.

    Chara, O., Tanaka, E. M. & Brusch, L. Mathematical modeling of regenerative processes. Curr. Top. Dev. Biol. 108, 283–317 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • 7.

    Di Talia, S. & Poss, K. D. Monitoring tissue regeneration at single-cell resolution. Cell Stem Cell 19, 428–431 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 8.

    Aman, A. J., Fulbright, A. N. & Parichy, D. M. Wnt/β-catenin regulates an ancient signaling network during zebrafish scale development. eLife 7, e37001 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 9.

    Bereiter-Hahn, J. & Zylberberg, L. Regeneration of teleost fish scale. Comp. Biochem. Physiol. Part A. Physiol. 105, 625–641 (1993).

    Article 

    Google Scholar
     

  • 10.

    Cox, B. D. et al. In toto imaging of dynamic osteoblast behaviors in regenerating skeletal bone. Curr. Biol. 28, 3937–3947 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 11.

    Iwasaki, M., Kuroda, J., Kawakami, K. & Wada, H. Epidermal regulation of bone morphogenesis through the development and regeneration of osteoblasts in the zebrafish scale. Dev. Biol. 437, 105–119 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 12.

    Sire, J. Y., Allizard, F., Babiar, O., Bourguignon, J. & Quilhac, A. Scale development in zebrafish (Danio rerio). J. Anat. 190, 545–561 (1997).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 13.

    Rasmussen, J. P., Vo, N. T. & Sagasti, A. Fish scales dictate the pattern of adult skin innervation and vascularization. Dev. Cell 46, 344–359 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 14.

    Pasqualetti, S., Banfi, G. & Mariotti, M. The zebrafish scale as model to study the bone mineralization process. J. Mol. Histol. 43, 589–595 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • 15.

    Regot, S., Hughey, J. J., Bajar, B. T., Carrasco, S. & Covert, M. W. High-sensitivity measurements of multiple kinase activities in live single cells. Cell 157, 1724–1734 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 16.

    Murray, J. D. Mathematical Biology, 3rd edn (Springer, 2002).

  • 17.

    Lake, D., Corrêa, S. A. & Müller, J. Negative feedback regulation of the ERK1/2 MAPK pathway. Cell. Mol. Life Sci. 73, 4397–4413 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 18.

    Tyson, J. J. & Keener, J. P. Singular perturbation-theory of traveling waves in excitable media. Physica D 32, 327–361 (1988).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • 19.

    Shibata, E. et al. Fgf signalling controls diverse aspects of fin regeneration. Development 143, 2920–2929 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 20.

    Sweet, E. M., Vemaraju, S. & Riley, B. B. Sox2 and Fgf interact with Atoh1 to promote sensory competence throughout the zebrafish inner ear. Dev. Biol. 358, 113–121 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 21.

    Shraiman, B. I. Mechanical feedback as a possible regulator of tissue growth. Proc. Natl Acad. Sci. USA 102, 3318–3323 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 22.

    Basan, M., Risler, T., Joanny, J. F., Sastre-Garau, X. & Prost, J. Homeostatic competition drives tumor growth and metastasis nucleation. HFSP J. 3, 265–272 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 23.

    Irvine, K. D. & Shraiman, B. I. Mechanical control of growth: ideas, facts and challenges. Development 144, 4238–4248 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 24.

    Hiratsuka, T. et al. Intercellular propagation of extracellular signal-regulated kinase activation revealed by in vivo imaging of mouse skin. eLife 4, e05178 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 25.

    Aoki, K. et al. Propagating wave of ERK activation orients collective cell migration. Dev. Cell 43, 305–317 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 26.

    Hino, N. et al. ERK-mediated mechanochemical waves direct collective cell polarization. Dev. Cell 53, 646–660 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 27.

    Ogura, Y., Wen, F. L., Sami, M. M., Shibata, T. & Hayashi, S. A switch-like activation relay of EGFR–ERK signaling regulates a wave of cellular contractility for epithelial invagination. Dev. Cell 46, 162–172 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 28.

    Lee, Y., Grill, S., Sanchez, A., Murphy-Ryan, M. & Poss, K. D. Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration. Development 132, 5173–5183 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 29.

    Nachtrab, G., Kikuchi, K., Tornini, V. A. & Poss, K. D. Transcriptional components of anteroposterior positional information during zebrafish fin regeneration. Development 140, 3754–3764 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 30.

    McKinney, S. A., Murphy, C. S., Hazelwood, K. L., Davidson, M. W. & Looger, L. L. A bright and photostable photoconvertible fluorescent protein. Nat. Methods 6, 131–133 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 31.

    Wan, J., Ramachandran, R. & Goldman, D. HB-EGF is necessary and sufficient for Müller glia dedifferentiation and retina regeneration. Dev. Cell 22, 334–347 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 32.

    Wan, J., Zhao, X. F., Vojtek, A. & Goldman, D. Retinal injury, growth factors, and cytokines converge on β-catenin and pStat3 signaling to stimulate retina regeneration. Cell Rep. 9, 285–297 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 33.

    Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-seq. Bioinformatics 25, 1105–1111 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 34.

    Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 36.

    Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 37.

    Mootha, V. K. et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115, 629–640 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 38.

    Thompson, J. D. et al. Identification and requirements of enhancers that direct gene expression during zebrafish fin regeneration. Development 147, dev191262 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 39.

    Molina, G. et al. Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nat. Chem. Biol. 5, 680–687 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 40.

    Carroll, K. J. et al. Estrogen defines the dorsal–ventral limit of VEGF regulation to specify the location of the hemogenic endothelial niche. Dev. Cell 29, 437–453 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 41.

    Luu-The, V., Paquet, N., Calvo, E. & Cumps, J. Improved real-time RT–PCR method for high-throughput measurements using second derivative calculation and double correction. Biotechniques 38, 287–293 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 42.

    Amat, F. et al. Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data. Nat. Methods 11, 951–958 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 43.

    Sommer, C., Straehle, C., Kothe, U. & Hamprecht, F. A. ilastik: interactive learning and segmentation toolkit. In 2011 IEEE Symposium on Biomedical Imaging: From Nano to Macro, 230–233 (IEEE, 2011).

  • 44.

    Grossmann, C., Roos, H.-G. r. & Stynes, M. Numerical Treatment of Partial Differential Equations (Springer, 2007).

  • Products You May Like

    Articles You May Like

    Oil prices expected to struggle despite Saudi cuts, but Goldman is more bullish than most
    Daily briefing: Two arthritis drugs cut the risk of death from COVID
    3 Sad Surprises: The Human Genome Project
    Amazon, Microsoft, Facebook and others pause political contributions after U.S. Capitol riot
    Building A Zero-Waste, Solar-Powered Brewery On An Off-Grid Island

    Leave a Reply

    Your email address will not be published. Required fields are marked *