Imaging single glycans

Nature
  • 1.

    Unwin, P. N. T. & Henderson, R. Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94, 425–440 (1975).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Blundell T. L. et al. (eds) Celebrating structural biology. Nat. Struct. Mol. Biol. 18, 1304–1316 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Bai, X.-c., McMullan, G. & Scheres, S. H. W. How cryo-EM is revolutionizing structural biology. Trends Biochem. Sci. 40, 49–57 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Callaway, E. The revolution will not be crystallized: a new method sweeps through structural biology. Nature 525, 172–174 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 5.

    Varki, A. et al. Essentials of Glycobiology 3rd edn (Cold Spring Harbor Laboratory Press, 2017).

  • 6.

    Gray, C. J. et al. Advancing solutions to the carbohydrate sequencing challenge. J. Am. Chem. Soc. 141, 14463–14479 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Mariño, K., Bones, J., Kattla, J. J. & Rudd, P. M. A systematic approach to protein glycosylation analysis: a path through the maze. Nat. Chem. Biol. 6, 713–723 (2010).

    Article 

    Google Scholar
     

  • 8.

    Dell, A. & Morris, H. R. Glycoprotein structure determination by mass spectrometry. Science 291, 2351 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 9.

    Lundborg, M., Fontana, C. & Widmalm, G. Automatic structure determination of regular polysaccharides based solely on NMR spectroscopy. Biomacromolecules 12, 3851–3855 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Rauschenbach, S., Ternes, M., Harnau, L. & Kern, K. Mass spectrometry as a preparative tool for the surface science of large molecules. Annu. Rev. Anal. Chem. 9, 473–498 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Hofmann, J., Hahm, H., Seeberger, P. & Pagel, K. Identification of carbohydrate anomers using ion mobility-mass spectrometry. Nature 526, 241–244 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 12.

    Faleh, A. B., Warnke, S. & Rizzo, T. R. Combining ultrahigh-resolution ion-mobility spectrometry with cryogenic infrared spectroscopy for the analysis of glycan mixtures. Anal. Chem. 91, 4876–4882 (2019).

    Article 

    Google Scholar
     

  • 13.

    Kley, C. S. et al. Atomic-scale observation of multiconformational binding and energy level alignment of ruthenium-based photosensitizers on TiO2 anatase. Nano Lett. 14, 563–569 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 14.

    Deng, Z. et al. A close look at proteins: submolecular resolution of two- and three-dimensionally folded cytochrome c at surfaces. Nano Lett. 12, 2452–2458 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 15.

    Longchamp, J.-N. et al. Imaging proteins at the single-molecule level. Proc. Natl Acad. Sci. USA 114, 1474 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 16.

    Abb, S., Harnau, L., Gutzler, R., Rauschenbach, S. & Kern, K. Two-dimensional honeycomb network through sequence-controlled self-assembly of oligopeptides. Nat. Commun. 7, 10335 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 17.

    Rauschenbach, S. et al. Two-dimensional folding of polypeptides into molecular nanostructures at surfaces. ACS Nano 11, 2420–2427 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Liu, L. et al. Chaperon-mediated single molecular approach toward modulating Aβ peptide aggregation. Nano Lett. 9, 4066–4072 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 19.

    Abb, S. et al. Carbohydrate self-assembly at surfaces: STM imaging of sucrose conformation and ordering on Cu(100). Angew. Chem. Int. Ed. 131, 8424–8428 (2019).


    Google Scholar
     

  • 20.

    Abb, S. et al. Polymorphism in carbohydrate self-assembly at surfaces: STM imaging and theoretical modelling of trehalose on Cu(100). RSC Adv. 9, 35813–35819 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Rauschenbach, S. et al. Electrospray ion beam deposition of clusters and biomolecules. Small 2, 540–547 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Guberman, M. & Seeberger, P. H. Automated glycan assembly: a perspective. J. Am. Chem. Soc. 141, 5581–5592 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Panza, M., Pistorio, S. G., Stine, K. J. & Demchenko, A. V. Automated chemical oligosaccharide synthesis: novel approach to traditional challenges. Chem. Rev. 118, 8105–8150 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Brazil, R. Can chemists crack the sugar code? Chemistry World https://www.chemistryworld.com/features/can-chemists-crack-our-cells-sugar-code/4010803.article#/ (2020).

  • 25.

    Delbianco, M. et al. Well-defined oligo- and polysaccharides as ideal probes for structural studies. J. Am. Chem. Soc. 140, 5421–5426 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Products You May Like

    Articles You May Like

    Don’t ask if artificial intelligence is good or fair, ask how it shifts power
    OneWeb’s revival worries astronomers
    Six months of coronavirus: the mysteries scientists are still racing to solve
    Unpacking how Dell’s debt load and VMware stake could come together
    Lunar Eclipse July 2020: Date, Timings, and How to Watch Live Stream

    Leave a Reply

    Your email address will not be published. Required fields are marked *