Nature

Landau quantization and highly mobile fermions in an insulator

  • 1.

    Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • 2.

    Chowdhury, D., Sodemann, I. & Senthil, T. Mixed-valence insulators with neutral Fermi surfaces. Nat. Commun. 9, 1766 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 3.

    Barkeshli, M., Nayak, C., Papić, Z., Young, A. & Zaletel, M. Topological exciton Fermi surfaces in two-component fractional quantized Hall insulators. Phys. Rev. Lett. 121, 026603 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    Motrunich, O. I. Orbital magnetic field effects in spin liquid with spinon Fermi sea: possible application to κ-(ET)2Cu2(CN)3. Phys. Rev. B 73, 155115 (2006).

    ADS 
    Article 

    Google Scholar
     

  • 5.

    Sodemann, I., Chowdhury, D. & Senthil, T. Quantum oscillations in insulators with neutral Fermi surfaces. Phys. Rev. B 97, 045152 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 6.

    Tan, B. S. et al. Unconventional Fermi surface in an insulating state. Science 349, 287–290 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 7.

    Xiang, Z. et al. Quantum oscillations of electrical resistivity in an insulator. Science 362, 65–69 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 8.

    Sato, Y. et al. Unconventional thermal metallic state of charge-neutral fermions in an insulator. Nat. Phys. 15, 954–959 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Zibrov, A. A. et al. Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level. Nature 549, 360–364 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 11.

    Fei, Z. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677–682 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Tang, S. et al. Quantum spin Hall state in monolayer 1T′-WTe2. Nat. Phys. (2017).

  • 13.

    Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76–79 (2018).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • 14.

    Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 15.

    Fatemi, V. et al. Magnetoresistance and quantum oscillations of an electrostatically tuned semimetal-to-metal transition in ultrathin WTe2. Phys. Rev. B 95, 041410(R) (2017).

    ADS 
    Article 

    Google Scholar
     

  • 16.

    Zheng, F. et al. On the quantum spin Hall gap of monolayer 1T′-WTe2. Adv. Mater. 28, 4845–4851 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Song, Y.-H. et al. Observation of Coulomb gap in the quantum spin Hall candidate single-layer 1T′-WTe2. Nat. Commun. 9, 4071 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 18.

    Fatemi, V. et al. Electrically tunable low-density superconductivity in a monolayer topological insulator. Science 362, 926–929 (2018).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • 19.

    Sajadi, E. et al. Gate-induced superconductivity in a monolayer topological insulator. Science 362, 922–925 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 20.

    Shoenberg, D. Magnetic Oscillations in Metals (Cambridge Univ. Press, 2009).

  • 21.

    Erten, O., Chang, P.-Y., Coleman, P. & Tsvelik, A. M. Skyrme insulators: insulators at the brink of superconductivity. Phys. Rev. Lett. 119, 057603 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 22.

    Motrunich, O. I. Variational study of triangular lattice spin-1/2 model with ring exchanges and spin liquid state in κ-(ET)2Cu2(CN)3. Phys. Rev. B 72, 045105 (2005).

    ADS 
    Article 

    Google Scholar
     

  • 23.

    Lee, S.-S. & Lee, P. A. U(1) gauge theory of the Hubbard model: spin liquid states and possible application to κ-(BEDT-TTF)2(Cu)2(CN)3. Phys. Rev. Lett. 95, 036403 (2005).

    ADS 
    Article 

    Google Scholar
     

  • 24.

    Ioffe, L. B. & Larkin, A. I. Gapless fermions and gauge fields in dielectrics. Phys. Rev. B 39, 8988–8999 (1989).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 25.

    Han, Z., Li, T., Zhang, L., Sullivan, G. & Du, R.-R. Anomalous conductance oscillations in the hybridization gap of InAs/GaSb quantum wells. Phys. Rev. Lett. 123, 126803 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 26.

    Xiao, D., Liu, C.-X., Samarth, N. & Hu, L.-H. Anomalous quantum oscillations of interacting electron-hole gases in inverted type-II InAs/GaSb quantum wells. Phys. Rev. Lett. 122, 186802 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 27.

    Shen, H. & Fu, L. Quantum oscillation from in-gap states and a non-Hermitian Landau level problem. Phys. Rev. Lett. 121, 026403 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 28.

    Zhang, L., Song, X.-Y. & Wang, F. Quantum oscillation in narrow-gap topological insulators. Phys. Rev. Lett. 116, 046404 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 29.

    Grubinskas, S. & Fritz, L. Modification of the Lifshitz-Kosevich formula for anomalous de Haas–van Alphen oscillations in inverted insulators. Phys. Rev. B 97, 115202 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 30.

    Ram, P. & Kumar, B. Theory of quantum oscillations of magnetization in Kondo insulators. Phys. Rev. B 96, 075115 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 31.

    Knolle, J. & Cooper, N. R. Quantum oscillations without a Fermi surface and the anomalous de Haas–van Alphen effect. Phys. Rev. Lett. 115, 146401 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 32.

    Knolle, J. & Cooper, N. R. Excitons in topological Kondo insulators: theory of thermodynamic and transport anomalies in SmB6. Phys. Rev. Lett. 118, 096604 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 33.

    Knolle, J. & Cooper, N. R. Anomalous de Haas–van Alphen effect in InAs/GaSb quantum wells. Phys. Rev. Lett. 118, 176801 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 34.

    Pal, H. K., Piéchon, F., Fuchs, J.-N., Goerbig, M. & Montambaux, G. Chemical potential asymmetry and quantum oscillations in insulators. Phys. Rev. B 94, 125140 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 35.

    Baskaran, G. Majorana Fermi sea in insulating SmB6: a proposal and a theory of quantum oscillations in Kondo insulators. Preprint at http://arXiv.org/abs/1507.03477v1 (2015).

  • 36.

    Jia, Y. et al. Evidence for a monolayer excitonic insulator. Preprint at http://arXiv.org/abs/2010.05390 (2020).

  • 37.

    Sutherland, B. Localization of electronic wave functions due to local topology. Phys. Rev. B 34, 5208–5211 (1986).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 38.

    Ali, M. N. et al. Correlation of crystal quality and extreme magnetoresistance of WTe2. Europhys. Lett. 110, 67002 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 39.

    Yin, J. et al. Dimensional reduction, quantum Hall effect and layer parity in graphite films. Nat. Phys. 15, 437–442 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Zeng, Y. & MacDonald, A. H. Electrically controlled two-dimensional electron-hole fluids. Phys. Rev. B 102, 085154 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Products You May Like

    Articles You May Like

    Rice Plant Immunity: Study Shows Pathogens No Longer Threat to Farmers
    Demand Flexibility Is Critical — Use It When We Have It
    Supporting democracy becomes the measure of leadership
    Solar & Wind Producers Back Tesla’s Direct Sales Push In New York
    SpaceX wins contracts for lunar lander, environmental satellite launches

    Leave a Reply

    Your email address will not be published. Required fields are marked *