Measurement of the time spent by a tunnelling atom within the barrier region

Nature
  • 1.

    MacColl, L. A. Note on the transmission and reflection of wave packets by potential barriers. Phys. Rev. 40, 621–626 (1932).

    ADS 
    MATH 

    Google Scholar
     

  • 2.

    Wigner, E. P. Lower limit for the energy derivative of the scattering phase shift. Phys. Rev. 98, 145–147 (1955).

    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • 3.

    Ranfagni, A., Mugnai, D., Fabeni, P. & Pazzi, G. P. Delay-time measurements in narrowed waveguides as a test of tunneling. Appl. Phys. Lett. 58, 774–776 (1991).

    ADS 
    CAS 

    Google Scholar
     

  • 4.

    Enders, A. & Nimtz, G. On superluminal barrier traversal. J. Phys. I 2, 1693–1698 (1992).


    Google Scholar
     

  • 5.

    Steinberg, A. M., Kwiat, P. G. & Chiao, R. Y. Measurement of the single-photon tunneling time. Phys. Rev. Lett. 71, 708–711 (1993).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Spielmann, C., Szipöcs, R., Stingl, A. & Krausz, F. Tunneling of optical pulses through photonic band gaps. Phys. Rev. Lett. 73, 2308–2311 (1994).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Sainadh, U. S. et al. Attosecond angular streaking and tunnelling time in atomic hydrogen. Nature 568, 75–77 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Hauge, E. H. & Støvneng, J. A. Tunneling times: a critical review. Rev. Mod. Phys. 61, 917–936 (1989).

    ADS 

    Google Scholar
     

  • 9.

    Landauer, R. & Martin, T. Barrier interaction time in tunneling. Rev. Mod. Phys. 66, 217–228 (1994).

    ADS 

    Google Scholar
     

  • 10.

    Chiao, R. Y. & Steinberg, A. M. in Progress in Optics Vol. 37 (ed. Wolf, E.) 345–405 (Elsevier, 1997).

  • 11.

    Steinberg, A. M. How much time does a tunneling particle spend in the barrier region? Phys. Rev. Lett. 74, 2405–2409 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • 12.

    Steinberg, A. M. Conditional probabilities in quantum theory and the tunneling-time controversy. Phys. Rev. A 52, 32–42 (1995).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 13.

    Aharonov, Y. & Vaidman, L. How the result of a measurement of a component of the spin of a spin-½ particle can turn out to be 100. Phys. Rev. Lett. 60, 1351–1354 (1988).

    ADS 
    CAS 

    Google Scholar
     

  • 14.

    Büttiker, M. & Landauer, R. Traversal time for tunneling. Phys. Rev. Lett. 49, 1739–1742 (1982).

    ADS 

    Google Scholar
     

  • 15.

    Büttiker, M. Larmor precession and the traversal time for tunneling. Phys. Rev. B 27, 6178–6188 (1983).

    ADS 

    Google Scholar
     

  • 16.

    Hartman, T. E. Tunneling of a wave packet. J. Appl. Phys. 33, 3427–3433 (1962).

    ADS 

    Google Scholar
     

  • 17.

    Deutsch, M. & Golub, J. Optical Larmor clock: measurement of the photonic tunneling time. Phys. Rev. A 53, 434–439 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • 18.

    Balcou, P. & Dutriaux, L. Dual optical tunneling times in frustrated total internal reflection. Phys. Rev. Lett. 78, 851–854 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • 19.

    Hino, M. et al. Measurement of Larmor precession angles of tunneling neutrons. Phys. Rev. A 59, 2261–2268 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 20.

    Esteve, D. et al. Observation of the temporal decoupling effect on the macroscopic quantum tunneling of a Josephson junction. In Proc. 9th Gen. Conf. Condensed Matter Division of the European Physical Society (eds Friedel, J. et al.) 121–124 (1989).

  • 21.

    Eckle, P. et al. Attosecond angular streaking. Nat. Phys. 4, 565–570 (2008).

    CAS 

    Google Scholar
     

  • 22.

    Eckle, P. et al. Attosecond ionization and tunneling delay time measurements in helium. Science 322, 1525–1529 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Pfeiffer, A. N., Cirelli, C., Smolarski, M. & Keller, U. Recent attoclock measurements of strong field ionization. Chem. Phys. 414, 84–91 (2013).

    CAS 

    Google Scholar
     

  • 24.

    Landsman, A. S. et al. Ultrafast resolution of tunneling delay time. Optica 1, 343–349 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 25.

    Camus, N. et al. Experimental evidence for quantum tunneling time. Phys. Rev. Lett. 119, 023201 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Zimmermann, T., Mishra, S., Doran, B. R., Gordon, D. F. & Landsman, A. S. Tunneling time and weak measurement in strong field ionization. Phys. Rev. Lett. 116, 233603 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Klaiber, M., Hatsagortsyan, K. Z. & Keitel, C. H. Under-the-tunneling-barrier recollisions in strong-field Ionization. Phys. Rev. Lett. 120, 013201 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Torlina, L. et al. Interpreting attoclock measurements of tunnelling times. Nat. Phys. 11, 503–508 (2015).

    CAS 

    Google Scholar
     

  • 29.

    Landauer, R. Barrier traversal time. Nature 341, 567–568 (1989).

    ADS 

    Google Scholar
     

  • 30.

    Fortun, A. et al. Direct tunneling delay time measurement in an optical lattice. Phys. Rev. Lett. 117, 010401 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 31.

    Baz’, A. I. Lifetime of intermediate states. Sov. J. Nucl. Phys. 4, 182–188 (1966).


    Google Scholar
     

  • 32.

    Rybachenko, V. F. Time of penetration of a particle through a potential barrier. Sov. J. Nucl. Phys. 5, 635–639 (1967).


    Google Scholar
     

  • 33.

    Pollak, E. & Miller, W. H. New physical interpretation for time in scattering theory. Phys. Rev. Lett. 53, 115–118 (1984).

    ADS 
    CAS 

    Google Scholar
     

  • 34.

    Sokolovski, D. & Baskin, L. M. Traversal time in quantum scattering. Phys. Rev. A 36, 4604–4611 (1987).

    ADS 
    CAS 

    Google Scholar
     

  • 35.

    Potnis, S., Ramos, R., Maeda, K., Carr, L. D. & Steinberg, A. M. Interaction-assisted quantum tunneling of a Bose–Einstein condensate out of a single trapping well. Phys. Rev. Lett. 118, 060402 (2017).

    ADS 

    Google Scholar
     

  • 36.

    Zhao, X. et al. Macroscopic quantum tunneling escape of Bose–Einstein condensates. Phys. Rev. A 96, 063601 (2017).

    ADS 

    Google Scholar
     

  • 37.

    Ramos, R., Spierings, D., Potnis, S. & Steinberg, A. M. Atom-optics knife edge: measuring narrow momentum distributions. Phys. Rev. A 98, 023611 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 38.

    Chu, S., Bjorkholm, J. E., Ashkin, A., Gordon, J. P. & Hollberg, L. W. Proposal for optically cooling atoms to temperatures of the order of 10−6 K. Opt. Lett. 11, 73–75 (1986).

    ADS 
    CAS 

    Google Scholar
     

  • 39.

    Ammann, H. & Christensen, N. Delta-kick cooling: a new method for cooling atoms. Phys. Rev. Lett. 78, 2088–2091 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • 40.

    Morinaga, M., Bouchoule, I., Karam, J.-C. & Salomon, C. Manipulation of motional quantum states of neutral atoms. Phys. Rev. Lett. 83, 4037–4040 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 41.

    Maréchal, E. et al. Longitudinal focusing of an atomic cloud using pulsed magnetic forces. Phys. Rev. A 59, 4636–4640 (1999).

    ADS 

    Google Scholar
     

  • 42.

    Myrskog, S. H., Fox, J. K., Moon, H. S., Kim, J. B. & Steinberg, A. M. Modified “delta -kick cooling” using magnetic field gradients. Phys. Rev. A 61, 053412 (2000).

    ADS 

    Google Scholar
     

  • 43.

    Le Kien, F., Schneeweiss, P. & Rauschenbeutel, A. Dynamical polarizability of atoms in arbitrary light fields: general theory and application to cesium. Eur. Phys. J. D 67, 92 (2013).

    ADS 

    Google Scholar
     

  • 44.

    Leavens, C. R. & Aers, G. C. Extension to arbitrary barrier of the Büttiker–Landauer characteristic barrier interaction times. Solid State Commun. 63, 1101–1105 (1987).

    ADS 

    Google Scholar
     

  • 45.

    Cohen-Tannoudji, C., Diu, B. & Laloë, F. Quantum Mechanics (Wiley, 1977).

  • 46.

    Sánchez-Soto, L. L., Monzón, J. J., Barriuso, A. G. & Cariñena, J. F. The transfer matrix: a geometrical perspective. Phys. Rep. 513, 191–227 (2013).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 47.

    Bao, W. & Cai, Y. Mathematical theory and numerical methods for Bose–Einstein condensation. Kinetic Relat. Models 6, 1–135 (2012).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 48.

    Wang, H. A time-splitting spectral method for computing dynamics of spinor F = 1 Bose–Einstein condensates. Int. J. Comput. Math. 84, 925–944 (2007).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 49.

    Bao, W. Ground states and dynamics of multicomponent Bose–Einstein condensates. Multiscale Model. Sim. 2, 210–236 (2004).

    MATH 

    Google Scholar
     

  • Products You May Like

    Articles You May Like

    Why Do Wisdom Teeth Suck?
    Catching a Human With a Giant Glue Trap! | MythBusters Jr.
    Tory Bruno on ULA’s big win: ‘We knew we were going to be competitive’
    Historic Italian motorbike company unveils new electric mopeds, more speed and power
    Massive Power Outage Briefly Knocks Out Northern Manhattan, Then Queens Goes

    Leave a Reply

    Your email address will not be published. Required fields are marked *