Molecular basis of β-arrestin coupling to formoterol-bound β1-adrenoceptor

Nature
  • 1.

    Evans, B. A., Sato, M., Sarwar, M., Hutchinson, D. S. & Summers, R. J. Ligand-directed signalling at β-adrenoceptors. Br. J. Pharmacol. 159, 1022–1038 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    DeWire, S. M., Ahn, S., Lefkowitz, R. J. & Shenoy, S. K. β-arrestins and cell signaling. Annu. Rev. Physiol. 69, 483–510 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Smith, J. S., Lefkowitz, R. J. & Rajagopal, S. Biased signalling: from simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 17, 243–260 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Kenakin, T. Biased receptor signaling in drug discovery. Pharmacol. Rev. 71, 267–315 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Rajagopal, S. et al. Quantifying ligand bias at seven-transmembrane receptors. Mol. Pharmacol. 80, 367–377 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Rasmussen, S. G. et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469, 175–180 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Rasmussen, S. G. et al. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477, 549–555 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Zhou, X. E. et al. Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell 170, 457–469.e13 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Siuda, E. R., Carr, R., III, Rominger, D. H. & Violin, J. D. Biased mu-opioid receptor ligands: a promising new generation of pain therapeutics. Curr. Opin. Pharmacol. 32, 77–84 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Violin, J. D. et al. Selectively engaging β-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. J. Pharmacol. Exp. Ther. 335, 572–579 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Wisler, J. W. et al. A unique mechanism of β-blocker action: carvedilol stimulates β-arrestin signaling. Proc. Natl Acad. Sci. USA 104, 16657–16662 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Wootten, D., Christopoulos, A., Marti-Solano, M., Babu, M. M. & Sexton, P. M. Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 19, 638–653 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Wingler, L. M. et al. Angiotensin analogs with divergent bias stabilize distinct receptor conformations. Cell 176, 468–478.e11 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Baker, J. G., Proudman, R. G. & Tate, C. G. The pharmacological effects of the thermostabilising (m23) mutations and intra and extracellular (β36) deletions essential for crystallisation of the turkey β-adrenoceptor. Naunyn-Schmiedeberg’s Arch. Pharmacol. 384, 71–91 (2011).

    CAS 

    Google Scholar
     

  • 15.

    Staus, D. P. et al. Sortase ligation enables homogeneous GPCR phosphorylation to reveal diversity in β-arrestin coupling. Proc. Natl Acad. Sci. USA 115, 3834–3839 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Shukla, A. K. et al. Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497, 137–141 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Warne, T., Edwards, P. C., Doré, A. S., Leslie, A. G. W. & Tate, C. G. Molecular basis for high-affinity agonist binding in GPCRs. Science 364, 775–778 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Yin, W. et al. A complex structure of arrestin-2 bound to a G protein-coupled receptor. Cell Res. 29, 971–983 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Huang, W. et al. Structure of the neurotensin receptor 1 in complex with β-arrestin 1. Nature 579, 303–308 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Staus, D. P. et al. Structure of the M2 muscarinic receptor–β-arrestin complex in a lipid nanodisc. Nature 579, 297–302 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    García-Nafría, J. & Tate, C. G. Cryo-EM structures of GPCRs coupled to Gs, Gi and Go. Mol. Cell. Endocrinol. 488, 1–13 (2019).

    PubMed 

    Google Scholar
     

  • 22.

    Pándy-Szekeres, G. et al. GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Res. 46, D440–D446 (2018).

    PubMed 

    Google Scholar
     

  • 23.

    Ballesteros, J. A. & Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci., 366–428 (1995).

  • 24.

    Sommer, M. E., Smith, W. C. & Farrens, D. L. Dynamics of arrestin–rhodopsin interactions: acidic phospholipids enable binding of arrestin to purified rhodopsin in detergent. J. Biol. Chem. 281, 9407–9417 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Bayburt, T. H. et al. Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. J. Biol. Chem. 286, 1420–1428 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Sommer, M. E., Hofmann, K. P. & Heck, M. Distinct loops in arrestin differentially regulate ligand binding within the GPCR opsin. Nat. Commun. 3, 995 (2012); correction 3, 1273 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Lally, C. C., Bauer, B., Selent, J. & Sommer, M. E. C-edge loops of arrestin function as a membrane anchor. Nat. Commun. 8, 14258 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Ostermaier, M. K., Peterhans, C., Jaussi, R., Deupi, X. & Standfuss, J. Functional map of arrestin-1 at single amino acid resolution. Proc. Natl Acad. Sci. USA 111, 1825–1830 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Peterhans, C., Lally, C. C., Ostermaier, M. K., Sommer, M. E. & Standfuss, J. Functional map of arrestin binding to phosphorylated opsin, with and without agonist. Sci. Rep. 6, 28686 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Gaidarov, I., Krupnick, J. G., Falck, J. R., Benovic, J. L. & Keen, J. H. Arrestin function in G protein-coupled receptor endocytosis requires phosphoinositide binding. EMBO J. 18, 871–881 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Kumari, P. et al. Functional competence of a partially engaged GPCR–β-arrestin complex. Nat. Commun. 7, 13416 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Yen, H. Y. et al. PtdIns(4,5)P2 stabilizes active states of GPCRs and enhances selectivity of G-protein coupling. Nature 559, 423–427 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Warne, T. et al. The structural basis for agonist and partial agonist action on a β1-adrenergic receptor. Nature 469, 241–244 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Ring, A. M. et al. Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody. Nature 502, 575–579 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    García-Nafría, J., Lee, Y., Bai, X., Carpenter, B. & Tate, C. G. Cryo-EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein. eLife 7, e35946 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Warne, T., Edwards, P. C., Leslie, A. G. & Tate, C. G. Crystal structures of a stabilized β1-adrenoceptor bound to the biased agonists bucindolol and carvedilol. Structure 20, 841–849 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Warne, T., Chirnside, J. & Schertler, G. F. Expression and purification of truncated, non-glycosylated turkey beta-adrenergic receptors for crystallization. Biochim. Biophys. Acta 1610, 133–140 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Warne, T., Serrano-Vega, M. J., Tate, C. G. & Schertler, G. F. Development and crystallization of a minimal thermostabilised G protein-coupled receptor. Protein Expr. Purif. 65, 204–213 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Kobashigawa, Y., Kumeta, H., Ogura, K. & Inagaki, F. Attachment of an NMR-invisible solubility enhancement tag using a sortase-mediated protein ligation method. J. Biomol. NMR 43, 145–150 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Pandey, S., Roy, D. & Shukla, A. K. Measuring surface expression and endocytosis of GPCRs using whole-cell ELISA. Methods Cell Biol. 149, 131–140 (2019).

    PubMed 

    Google Scholar
     

  • 43.

    Kumari, P. et al. Core engagement with β-arrestin is dispensable for agonist-induced vasopressin receptor endocytosis and ERK activation. Mol. Biol. Cell 28, 1003–1010 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Dogra, S., Sona, C., Kumar, A. & Yadav, P. N. Tango assay for ligand-induced GPCR–β-arrestin2 interaction: Application in drug discovery. Methods Cell Biol. 132, 233–254 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Ghosh, E. et al. Conformational sensors and domain swapping reveal structural and functional differences between β-arrestin isoforms. Cell Reports 28, 3287–3299.e6 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Urbani, A. & Warne, T. A colorimetric determination for glycosidic and bile salt-based detergents: applications in membrane protein research. Anal. Biochem. 336, 117–124 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Bowler, M. W. et al. MASSIF-1: a beamline dedicated to the fully automatic characterization and data collection from crystals of biological macromolecules. J. Synchrotron Radiat. 22, 1540–1547 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Svensson, O., Malbet-Monaco, S., Popov, A., Nurizzo, D. & Bowler, M. W. Fully automatic characterization and data collection from crystals of biological macromolecules. Acta Crystallogr. D 71, 1757–1767 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Svensson, O., Gilski, M., Nurizzo, D. & Bowler, M. W. Multi-position data collection and dynamic beam sizing: recent improvements to the automatic data-collection algorithms on MASSIF-1. Acta Crystallogr. D 74, 433–440 (2018).

    CAS 

    Google Scholar
     

  • 50.

    Leslie, A. G. The integration of macromolecular diffraction data. Acta Crystallogr. D 62, 48–57 (2006).

    PubMed 

    Google Scholar
     

  • 51.

    Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D 62, 72–82 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D 67, 355–367 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).


    Google Scholar
     

  • 55.

    Gurevich, V. V. & Gurevich, E. V. The molecular acrobatics of arrestin activation. Trends Pharmacol. Sci. 25, 105–111 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Banerjee, S., Huber, T. & Sakmar, T. P. Rapid incorporation of functional rhodopsin into nanoscale apolipoprotein bound bilayer (NABB) particles. J. Mol. Biol. 377, 1067–1081 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Ritchie, T. K. et al. Chapter 11 – reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol. 464, 211–231 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Rigaud, J. L., Levy, D., Mosser, G. & Lambert, O. Detergent removal by non-polar polystyrene beads. Eur. Biophys. J. 27, 305–319 (1998).

    CAS 

    Google Scholar
     

  • 59.

    Naydenova, K. & Russo, C. J. Measuring the effects of particle orientation to improve the efficiency of electron cryomicroscopy. Nat. Commun. 8, 629 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    PubMed 

    Google Scholar
     

  • 61.

    Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data preprocessing with Warp. Nat. Methods 16, 1146–1152 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Ramlaul, K., Palmer, C. M. & Aylett, C. H. S. Mitigating local over-fitting during single particle reconstruction with Sidesplitter. Preprint at https://www.biorxiv.org/content/10.1101/2019.12.12.874081v2 (2020).

  • 64.

    Ramlaul, K., Palmer, C. M. & Aylett, C. H. S. A local agreement filtering algorithm for transmission EM reconstructions. J. Struct. Biol. 205, 30–40 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Wood, C. et al. Collaborative computational project for electron cryo-microscopy. Acta Crystallogr. D 71, 123–126 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 66.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Moriarty, N. W., Grosse-Kunstleve, R. W. & Adams, P. D. electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr. D 65, 1074–1080 (2009).

    CAS 

    Google Scholar
     

  • 68.

    Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Barad, B. A. et al. EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy. Nat. Methods 12, 943–946 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Amunts, A. et al. Structure of the yeast mitochondrial large ribosomal subunit. Science 343, 1485–1489 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Carpenter, B. & Tate, C. G. Expression, purification and crystallisation of the adenosine A2A receptor bound to an engineered mini G protein. Bio Protoc. 7, e2234 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Tan, Y. Z. et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Products You May Like

    Articles You May Like

    GGV’s Jeff Richards: ‘There is a level of resiliency in Silicon Valley that we did not have 10 years ago’
    Blue Canyon Technologies could produce up to 20 satellite buses for DARPA’s Blackjack
    How to reach another planet when a pandemic is hobbling yours
    AMC shares surge after WSJ report that the company is working on deal to avoid bankruptcy
    Three companies selected to develop military GPS handheld devices

    Leave a Reply

    Your email address will not be published. Required fields are marked *