Nature

The superconducting quasicharge qubit

  • 1.

    Josephson, B. D. Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962).

    ADS 
    MATH 

    Google Scholar
     

  • 2.

    Clarke, J., Cleland, A., Devoret, M. H., Esteve, D. & Martinis, J. Quantum mechanics of a macroscopic variable: the phase difference of a Josephson junction. Science 239, 992–997 (1988).

    ADS 
    PubMed 

    Google Scholar
     

  • 3.

    Devoret, M. H. & Schoelkopf, R. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • 4.

    Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • 5.

    Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008).

    ADS 
    PubMed 

    Google Scholar
     

  • 6.

    Nakamura, Y., Pashkin, Y. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999).

    ADS 

    Google Scholar
     

  • 7.

    Vion, D. et al. Manipulating the quantum state of an electrical circuit. Science 296, 886–889 (2002).

    ADS 
    PubMed 

    Google Scholar
     

  • 8.

    Chiorescu, I., Nakamura, Y., Harmans, C. J. P. M. & Mooij, J. E. Coherent quantum dynamics of a superconducting flux qubit. Science 299, 1869–1871 (2003).

    ADS 
    PubMed 

    Google Scholar
     

  • 9.

    Martinis, J. M., Nam, S., Aumentado, J. & Urbina, C. Rabi oscillations in a large Josephson-junction qubit. Phys. Rev. Lett. 89, 117901 (2002).

    ADS 
    PubMed 

    Google Scholar
     

  • 10.

    Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    ADS 

    Google Scholar
     

  • 11.

    Schmid, A. Diffusion and localization in a dissipative quantum system. Phys. Rev. Lett. 51, 1506 (1983).

    ADS 

    Google Scholar
     

  • 12.

    Bulgadaev, S. A. Phase diagram of a dissipative quantum system. JETP Lett. 39, 264–267 (1984).


    Google Scholar
     

  • 13.

    Averin, D. V., Zorin, A. B. & Likharev, K. K. Bloch oscillations in small Josephson junctions. Sov. Phys. JETP 61, 407–413 (1985).


    Google Scholar
     

  • 14.

    Schön, G. & Zaikin, A. D. Quantum coherent effects, phase transitions, and the dissipative dynamics of ultra small tunnel junctions. Phys. Rep. 198, 237–412 (1990).

    ADS 

    Google Scholar
     

  • 15.

    Kuzmin, L. S. & Haviland, D. B. Observation of the Bloch oscillations in an ultrasmall Josephson junction. Phys. Rev. Lett. 67, 2890 (1991).

    ADS 
    PubMed 

    Google Scholar
     

  • 16.

    Haviland, D. B. & Delsing, P. Cooper-pair charge solitons: the electrodynamics of localized charge in a superconductor. Phys. Rev. B 54, R6857–R6860 (1996).

    ADS 

    Google Scholar
     

  • 17.

    Penttilä, J. S., Parts, Ü., Hakonen, P. J., Paalanen, M. A. & Sonin, E. B. “Superconductor–insulator transition” in a single Josephson junction. Phys. Rev. Lett. 82, 1004 (1999).

    ADS 

    Google Scholar
     

  • 18.

    Watanabe, M. & Haviland, D. B. Coulomb blockade and coherent single-Cooper-pair tunneling in single Josephson junctions. Phys. Rev. Lett. 86, 5120 (2001).

    ADS 
    PubMed 

    Google Scholar
     

  • 19.

    Corlevi, S., Guichard, W., Hekking, F. W. J. & Haviland, D. B. Phase-charge duality of a Josephson junction in a fluctuating electromagnetic environment. Phys. Rev. Lett. 97, 096802 (2006).

    ADS 
    PubMed 

    Google Scholar
     

  • 20.

    Ergül, A. et al. Localizing quantum phase slips in one-dimensional Josephson junction chains. New J. Phys. 15, 095014 (2013).

    ADS 

    Google Scholar
     

  • 21.

    Cedergren, K. et al. Insulating Josephson junction chains as pinned luttinger liquids. Phys. Rev. Lett. 119, 167701 (2017).

    ADS 
    PubMed 

    Google Scholar
     

  • 22.

    Murani, A. et al. Absence of a dissipative quantum phase transition in Josephson junctions. Phys. Rev. X 10, 021003 (2020).


    Google Scholar
     

  • 23.

    Matveev, K. A., Larkin, A. I. & Glazman, L. I. Persistent current in superconducting nanorings. Phys. Rev. Lett. 89, 096802 (2002).

    ADS 
    PubMed 

    Google Scholar
     

  • 24.

    Koch, J., Manucharyan, V., Devoret, M. H. & Glazman, L. I. Charging effects in the inductively shunted Josephson junction. Phys. Rev. Lett. 103, 217004 (2009).

    ADS 
    PubMed 

    Google Scholar
     

  • 25.

    Manucharyan, V. E., Koch, J., Glazman, L. I. & Devoret, M. H. Fluxonium: single Cooper-pair circuit free of charge offsets. Science 326, 113–116 (2009).

    ADS 
    PubMed 

    Google Scholar
     

  • 26.

    Nguyen, L. B. et al. High-coherence fluxonium qubit. Phys. Rev. X 9, 041041 (2019).


    Google Scholar
     

  • 27.

    Manucharyan, V. E. et al. Evidence for coherent quantum phase slips across a Josephson junction array. Phys. Rev. B 85, 024521 (2012).

    ADS 

    Google Scholar
     

  • 28.

    Kuzmin, R. et al. Quantum electrodynamics of a superconductor-insulator phase transition. Nat. Phys. (2019).

  • 29.

    Kou, A. et al. Simultaneous monitoring of fluxonium qubits in a waveguide. Phys. Rev. Appl. 9, 064022 (2018).

    ADS 

    Google Scholar
     

  • 30.

    Schuster, D. I. et al. ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. Phys. Rev. Lett. 94, 123602 (2005).

    ADS 
    PubMed 

    Google Scholar
     

  • 31.

    Bell, M. T., Sadovskyy, I. A., Ioffe, L. B., Kitaev, A. Y. & Gershenson, M. E. Quantum superinductor with tunable nonlinearity. Phys. Rev. Lett. 109, 137003 (2012).

    ADS 
    PubMed 

    Google Scholar
     

  • 32.

    Douçot, B. & Ioffe, L. B. Physical implementation of protected qubits. Rep. Prog. Phys. 75, 072001 (2012).

    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • 33.

    Brooks, P., Kitaev, A. & Preskill, J. Protected gates for superconducting qubits. Phys. Rev. A 87, 052306 (2013).

    ADS 

    Google Scholar
     

  • 34.

    Nguyen, F. et al. Current to frequency conversion in a Josephson circuit. Phys. Rev. Lett. 99, 187005 (2007).

    ADS 
    PubMed 

    Google Scholar
     

  • 35.

    Di Marco, A., Hekking, F. W. J. & Rastelli, G. Quantum phase-slip junction under microwave irradiation. Phys. Rev. B 91, 184512 (2015).

    ADS 

    Google Scholar
     

  • 36.

    Dolan, G. J. Offset masks for lift-off photoprocessing. Appl. Phys. Lett. 31, 337–339 (1977).

    ADS 

    Google Scholar
     

  • 37.

    Frunzio, L., Wallraff, A., Schuster, D., Majer, J. & Schoelkopf, R. Fabrication and characterization of superconducting circuit QED devices for quantum computation. IEEE Trans. Appl. Supercond. 15, 860–863 (2005).

    ADS 

    Google Scholar
     

  • 38.

    Chang, F. I. et al. Gas-phase silicon micromachining with xenon difluoride. In Proc. SPIE 2641, https://doi.org/10.1117/12.220933 (SPIE, 1995).

  • 39.

    Chu, Y. et al. Suspending superconducting qubits by silicon micromachining. Appl. Phys. Lett. 109, 112601 (2016).

    ADS 

    Google Scholar
     

  • Products You May Like

    Articles You May Like

    The COVID Covenant: Going big is the price of admission
    Daily briefing: More heat means less ice, higher seas — and no going back
    Arianespace’s revised OneWeb contract drops Ariane 6, two Soyuz launches
    NASA inspector general criticizes high-risk approach to CLPS program
    Facebook Oversight Board confirms it plans to launch ahead of U.S. election

    Leave a Reply

    Your email address will not be published. Required fields are marked *