Nature

Value-guided remapping of sensory cortex by lateral orbitofrontal cortex

  • 1.

    Fettes, P., Schulze, L. & Downar, J. Cortico-striatal-thalamic loop circuits of the orbitofrontal cortex: promising therapeutic targets in psychiatric illness. Front. Syst. Neurosci. 11, 25 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Miller, E. K. The prefrontal cortex and cognitive control. Nat. Rev. Neurosci. 1, 59–65 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Fuster, J. M. The prefrontal cortex—an update: time is of the essence. Neuron 30, 319–333 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Rolls, E. T. The orbitofrontal cortex and reward. Cereb. Cortex 10, 284–294 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Izquierdo, A. Functional heterogeneity within rat orbitofrontal cortex in reward learning and decision making. J. Neurosci. 37, 10529–10540 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Rudebeck, P. H. & Murray, E. A. The orbitofrontal oracle: cortical mechanisms for the prediction and evaluation of specific behavioral outcomes. Neuron 84, 1143–1156 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Rushworth, M. F. S., Noonan, M. P., Boorman, E. D., Walton, M. E. & Behrens, T. E. Frontal cortex and reward-guided learning and decision-making. Neuron 70, 1054–1069 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Wallis, J. D. Orbitofrontal cortex and its contribution to decision-making. Annu. Rev. Neurosci. 30, 31–56 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Carlén, M. What constitutes the prefrontal cortex? Science 358, 478–482 (2017).

    ADS 
    PubMed 

    Google Scholar
     

  • 10.

    Chen, J. L., Carta, S., Soldado-Magraner, J., Schneider, B. L. & Helmchen, F. Behaviour-dependent recruitment of long-range projection neurons in somatosensory cortex. Nature 499, 336–340 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Chen, J. L. et al. Pathway-specific reorganization of projection neurons in somatosensory cortex during learning. Nat. Neurosci. 18, 1101–1108 (2015).

    PubMed 

    Google Scholar
     

  • 12.

    Petersen, C. C. H. Sensorimotor processing in the rodent barrel cortex. Nat. Rev. Neurosci. 20, 533–546 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Bissonette, G. B., Schoenbaum, G., Roesch, M. R. & Powell, E. M. Interneurons are necessary for coordinated activity during reversal learning in orbitofrontal cortex. Biol. Psychiatry 77, 454–464 (2015).

    PubMed 

    Google Scholar
     

  • 14.

    Jennings, J. H. et al. Interacting neural ensembles in orbitofrontal cortex for social and feeding behaviour. Nature 565, 645–649 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Pho, G. N., Goard, M. J., Woodson, J., Crawford, B. & Sur, M. Task-dependent representations of stimulus and choice in mouse parietal cortex. Nat. Commun. 9, 2596 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Ramesh, R. N., Burgess, C. R., Sugden, A. U., Gyetvan, M. & Andermann, M. L. Intermingled ensembles in visual association cortex encode stimulus identity or predicted outcome. Neuron 100, 900–915.e9 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Voigt, F. F. et al. The mesoSPIM initiative: open-source light-sheet microscopes for imaging cleared tissue. Nat. Methods 16, 1105–1108 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Bastos, A. M. et al. Canonical microcircuits for predictive coding. Neuron 76, 695–711 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Schoenbaum, G., Roesch, M. R., Stalnaker, T. A. & Takahashi, Y. K. A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nat. Rev. Neurosci. 10, 885–892 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Schultz, W. & Dickinson, A. Neuronal coding of prediction errors. Annu. Rev. Neurosci. 23, 473–500 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Sul, J. H., Kim, H., Huh, N., Lee, D. & Jung, M. W. Distinct roles of rodent orbitofrontal and medial prefrontal cortex in decision making. Neuron 66, 449–460 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Chudasama, Y. & Robbins, T. W. Dissociable contributions of the orbitofrontal and infralimbic cortex to Pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. J. Neurosci. 23, 8771–8780 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Groman, S. M. et al. Orbitofrontal circuits control multiple reinforcement-learning processes. Neuron 103, 734–746.e3 (2019).

  • 24.

    Hattori, R., Danskin, B., Babic, Z., Mlynaryk, N. & Komiyama, T. Area-specificity and plasticity of history-dependent value coding during learning. Cell 177, 1858–1872 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Saez, R. A., Saez, A., Paton, J. J., Lau, B. & Salzman, C. D. Distinct roles for the amygdala and orbitofrontal cortex in representing the relative amount of expected reward. Neuron 95, 70–77.e3 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Rikhye, R. V., Gilra, A. & Halassa, M. M. Thalamic regulation of switching between cortical representations enables cognitive flexibility. Nat. Neurosci. 21, 1753–1763 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Shuler, M. G. & Bear, M. F. Reward timing in the primary visual cortex. Science 311, 1606–1609 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Chéreau, R. et al. Dynamic perceptual feature selectivity in primary somatosensory cortex upon reversal learning. Nat. Commun. 11, 3245 (2020).

  • 29.

    Bari, A. et al. Serotonin modulates sensitivity to reward and negative feedback in a probabilistic reversal learning task in rats. Neuropsychopharmacology 35, 1290–1301 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Isaacson, J. S. & Scanziani, M. How inhibition shapes cortical activity. Neuron 72, 231–243 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nat. Mach. Intell. 1, 133–143 (2019).


    Google Scholar
     

  • 32.

    Mayford, M. et al. Control of memory formation through regulated expression of a CaMKII transgene. Science 274, 1678–1683 (1996).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Madisen, L. et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85, 942–958 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Harris, J. A. et al. Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation. Front. Neural Circuits 8, 76 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Carandini, M. & Churchland, A. K. Probing perceptual decisions in rodents. Nat. Neurosci. 16, 824–831 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Bailey, K. R. & Crawley, J. N. in Methods in Behavioral Analysis in Neuroscience (eds Bailey, K. R., Crawley, J. N. & Buccafusco, J. J.) Ch. 5 (CRC, 2009).

  • 37.

    Farr, T. D., Liu, L., Colwell, K. L., Whishaw, I. Q. & Metz, G. A. Bilateral alteration in stepping pattern after unilateral motor cortex injury: a new test strategy for analysis of skilled limb movements in neurological mouse models. J. Neurosci. Methods 153, 104–113 (2006).

    PubMed 

    Google Scholar
     

  • 38.

    Banerjee, A. et al. Jointly reduced inhibition and excitation underlies circuit-wide changes in cortical processing in Rett syndrome. Proc. Natl Acad. Sci. USA 113, E7287–E7296 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Yang, B. et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 158, 945–958 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Gomez, J. L. et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 357, 503–507 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Gilad, A., Gallero-Salas, Y., Groos, D. & Helmchen, F. Behavioral strategy determines frontal or posterior location of short-term memory in neocortex. Neuron 99, 814–828.e7 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Langer, D. et al. HelioScan: a software framework for controlling in vivo microscopy setups with high hardware flexibility, functional diversity and extendibility. J. Neurosci. Methods 215, 38–52 (2013).

    PubMed 

    Google Scholar
     

  • 44.

    Guo, Z. V. et al. Flow of cortical activity underlying a tactile decision in mice. Neuron 81, 179–194 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Sreenivasan, V. et al. Movement initiation signals in mouse whisker motor cortex. Neuron 92, 1368–1382 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Huber, D. et al. Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature 484, 473–478 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Products You May Like

    Articles You May Like

    HyImpulse hybrid rocket motor roars to life for the first time
    Arianespace’s revised OneWeb contract drops Ariane 6, two Soyuz launches
    China claims it will be ‘carbon neutral’ by the year 2060
    Camera Traps and Motion Sensors Show the Wacky Side of Wildlife
    ‘Apocalyptic’ fires are ravaging the world’s largest tropical wetland

    Leave a Reply

    Your email address will not be published. Required fields are marked *